EFFECT OF CONCAVE DESIGN FACTORS ON CYLINDER-CONCAVE PERFORMANCE IN CORN

Eric R. Norris1 and Gavin L. Wall2

1Department of Agricultural Engineering, Macdonald College, Ste Anne de Bellevue, Quebec H9X 1C0; and 2Department of Agricultural Engineering, Massey University, Palmerston North, New Zealand

Received 20 June 1985, accepted 3 February 1986


Five concaves with different bar spacing, rod spacing and bar height were used to thresh hand harvested corn, using constant cylinder speed and constant cylinder-concave clearance. Increased concave open area resulted in an increased concave separation efficiency and decreased kernel damage. Amount of non-grain material passing through the concave increased with increasing concave open area.

INTRODUCTION

The modern grain combine is one of the most operationally complex and costly pieces of agricultural equipment on farms today. Although the grain combine is over 150 yr old (Nyberg 1957), a self-propelled combine capable of harvesting corn has been on the market for only 30 yr.

Buckingham (1977) commented that combine design could be described as a series of compromises made to provide a machine capable of harvesting a wide variety of crops (having seeds which vary greatly in shape and size) in conditions ranging from rice paddies to desert and with yields from 1000 kg/ha of wheat to 12 500 kg/ha of corn.

In the harvesting of small grains, the ears of grain and plant stalk material (straw) enter the combine in a continuous mat. This contrasts greatly to the harvesting of corn, where the ear of corn is removed from the plant material and the ears are presented as discrete units to the threshing cylinder.

Threshed small grain kernels must overcome the resistance of the straw mat to migrate to the concave surface before passing through the concave. The threshed kernels of corn do not experience this resistance. Therefore, there are distinct differences between the threshing of small grains and the threshing of corn.

The combine must perform two functions. It must support the crop material passing through the threshing unit so that the cylinder rasp bars can thresh the grain, and it must allow passage of the maximum possible amount of threshed grain. It has been noted, from observation of high-speed movie film of the threshing of corn, that the kernels, once threshed, have difficulty passing through the concave (Wall 1981). Gasparetto et al. (1978) drew the same conclusion from an ultra-high-speed movie film investigation of the movement of wheat kernels in the threshing crescent. Chowdhury and Buchele (1978) estimated that one-half of the corn kernel damage occurring in the threshing cylinder occurred after the kernels had been threshed; that is, the damage occurred whilst the kernels were moving within the threshing crescent prior to passing through the concave or from the threshing crescent.

Furthermore, Mahmoud and Buchele (1975) reported that corn kernels passing through the front sections of the concave sustained lower levels of damage than those passing through the rear sections of the concave. Clearly it is desirable to remove the kernels from the threshing crescent as soon as possible after threshing.

A concave which removes the kernels from the threshing crescent soon after threshing would probably pass more grain through the concave; thus decreasing the load on the separating section of the combine, and decreasing the separating loss.

The objective of this study was to investigate the effect of changes in some of the concave design parameters on threshing efficiency, corn kernel damage and concave separation efficiency. Threshing efficiency is defined as the proportion of corn kernels presented to the threshing cylinder which are detached from the cobs. Concave separation efficiency is defined as the proportion of threshed kernels which pass through the concave rather than over the rear of the concave.

LITERATURE REVIEW

The effect of concave length when threshing wheat and barley was studied by Cooper (1978). He reported that a 25% increase of arc from 84° to 105° increased grain separation by 17%; but a similar increase of arc from 105° to 135° gave a smaller increase in grain separation; however, the importance of increasing concave separation efficiency was emphasized when a 5% difference of concave separation (between 105 and 135 degrees) increased the level of straw walker loss.

Arnold and Lake (1964) demonstrated the importance of removing the threshed grain from the path of the rasp bars if grain damage is to be avoided. Their study utilized an open (normal) concave and a closed (blanking plates fitted between the
Figure 1. The concave design parameters.

TABLE I. THE VALUES OF THE DESIGN PARAMETERS FOR THE CONCAVES

<table>
<thead>
<tr>
<th>Design parameter</th>
<th>Number of bars</th>
<th>Concave rod spacing (mm, c-c)</th>
<th>Concave bar height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range selected</td>
<td>6-12</td>
<td>23-37</td>
<td>5-15</td>
</tr>
<tr>
<td>Increment</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Random selection</td>
<td>10</td>
<td>33</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>Standard concave</td>
<td>9</td>
<td>21</td>
<td>16</td>
</tr>
</tbody>
</table>

Note: For each concave the concave radius of curvature was 280 mm and the concave length was 411 mm.

The four new concaves and the standard concave were each used to thresh corn. A cylinder-concave clearance of 25 mm front, 16 mm rear was used for each concave; the cylinder peripheral speed was 14.7 m/s. The experiment was conducted in the form of a randomized complete block design. Measurements were made of concave separation efficiency, shelling efficiency, kernel damage (using the colorimetric technique developed by Chowdhury (1978)), weight of husks and silks passing through the concave, and weight of cob pieces passing through the concave. The kernel moisture content was 23.3%, wet basis.
TABLE II. RESULTS OF THE COMPARISON OF THE FIVE CONCAVES DATE

<table>
<thead>
<tr>
<th>Number of concave bars</th>
<th>Concave rod spacing (mm)</th>
<th>Percent open area</th>
<th>Foreign material under concave</th>
<th>Concave separation efficiency† (%)</th>
<th>Shelling efficiency† (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cobs†</td>
<td>Husks/silks†</td>
<td>Kernel damage‡</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>41</td>
<td>10a</td>
<td>0.2a</td>
<td>50.0a</td>
</tr>
<tr>
<td>9§</td>
<td>21</td>
<td>44</td>
<td>9a</td>
<td>0.0a</td>
<td>43.7a</td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>51</td>
<td>36ab</td>
<td>1.1ab</td>
<td>44.0b</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>51</td>
<td>74b</td>
<td>1.6b</td>
<td>55.3b</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>60</td>
<td>221c</td>
<td>5.4c</td>
<td>38.0c</td>
</tr>
</tbody>
</table>

†Each value is the mean of three determinations.
‡The kernel damage reading for hand-shelled kernels (i.e., no machine damage) was approximately 18.0.
§The standard Massey Ferguson 300 concave.

RESULTS

Table II shows the results of the tests conducted on the five concaves. The order of presentation is according to increasing concave open area. The dependent variables (foreign material under concave, kernel damage, concave separation efficiency and shelling efficiency) have each been subjected to Duncan’s multiple range test to detect any significant differences among the concave designs.

From the data, a limited comparison of the performance of the concaves may be made. The amount of foreign material which passes through the concave is of concern, because it passes directly to the cleaning section of the combine and adversely affects the performance of the cleaning section. The weight of foreign material passing through the concaves generally increased as the percent open area of the concave increased (Table II).

The level of kernel damage was least for the six-bar concave and greatest for the twelve-bar concave. Kernel damage for the eight-, nine- and ten-bar concaves was not significantly different amongst these concaves but was significantly different from that of both the six- and twelve-bar concaves (Table II). The correlation coefficient for kernel damage versus concave separation efficiency was −0.79 (significant at the 1% level). Thus, some foundation was given to the hypothesis that decreased kernel damage would be achieved with increased concave separation efficiency. The six-bar concave caused 24% less damage than the standard Massey-Ferguson 300 concave.

The concave separation efficiency of each concave was significantly different from that of the other concaves (Table II). The six-bar concave had a concave separation efficiency which was 38% greater than the concave separation efficiency of the standard Massey-Ferguson 300 concave. Clearly then, reduced kernel damage and increased concave separation efficiency can be achieved through changes in some of the concave design parameters. Furthermore, the six-bar concave passed 50% fewer threshed kernels to the straw walkers than did the standard Massey-Ferguson 300 concave. It is expected that this would result in a significant reduction in separation losses.

SUMMARY AND CONCLUSIONS

The prospect of reducing the corn kernel damage occurring in a “conventional” combine cylinder, and increasing the concave separation efficiency of a conventional combine cylinder has been investigated. Five different concaves were used to thresh corn in a laboratory thresher. It is concluded that corn kernel damage may be decreased and concave separation efficiency increased by changes in some of the concave design parameters. Experimental results show that corn kernel damage can be decreased by at least 24% and concave separation efficiency can be increased by at least 38%; however, these improvements were accompanied by a significant increase in the quantity of foreign (non-grain) material passing through the concave. This result was achieved by decreasing the number of concave bars from nine to six, by increasing the concave rod spacing from 21 mm to 30 mm, and by increasing the height of the concave bars above the concave rods from 10 to 13 mm. It must be stressed, however, that the data presented here are not sufficient to specify an optimum concave design for threshing corn.

REFERENCES